Abstract

Male patients who undergo prepubertal chemotherapy face the dual problems of fertility preservation in adulthood, including low testosterone, hypersexual function, and infertility. Humanin, as a small polypeptide coded within the mitochondrial DNA, with the mitochondrial short open reading frame named MOTS-c, both was believed to regulate mitochondrial homeostasis, be anti-inflammatory, improve metabolism, anti-apoptosis, and multiple pharmacological effects. However, there exists little evidence that reported Humanin and MOTS-c 's effects on moderating male spermatogenic function of patients after prepubertal chemotherapy. Here, we found that in vivo, mitochondrial polypeptides Humanin analog (HNG) and MOTS-c efficaciously protected the testicular spermatogenic function from reproductive injury. Moreover, transcriptomic sequencing analysis was performed to verify the differentially expressed genes such as Piwil2, AGT (angiotensinogen), and PTGDS (glycoprotein prostaglandin D2 synthase), which are related to the regulation of male reproductive function of male mice induced by prepubertal chemotherapy. Collectively, our data revealed that both Humanin analogs HNG and MOTS-c are the feasible approaches attached to the protective effect on the male reproductive function damaged by prepubertal chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.