Abstract
To evaluate the effect of 10% human serum (HS), 5% platelet-rich plasma (PRP), and 5% autologous conditioned plasma (ACP) on migration, proliferation, and extracellular matrix (ECM) synthesis of human meniscus cells. Cell migration and proliferation on stimulation with HS, PRP, and ACP were assessed by chemotaxis assays and measurement of genomic DNA content. Meniscus cells were cultivated in pellets stimulated with 10% HS, 5% PRP, or 5% ACP. Meniscal ECM formation was evaluated by histochemical staining of collagen type I, type II, and proteoglycans and by analysis of fibrochondrocyte marker gene expression. Human meniscus cells were significantly attracted by all 3 blood-derived products (10% HS and 5% ACP: P= .0001, 5% PRP: P= .0002). Cell proliferation at day 9 was significantly increased on stimulation with 10% HS (P= .0001) and 5% PRP (P= .0002) compared with 5% ACP and controls. Meniscus cell pellet cultures showed the formation of a well-structured meniscal ECM with deposition of collagen type I, type II, and proteoglycans on stimulation with 10% HS, whereas 5% PRP or 5% ACP resulted in the formation of an inhomogeneous and more fibrous ECM. Stimulation with 10% HS and 5% ACP showed a significant induction of fibrochondrocyte marker genes such as aggrecan (HS: P= .0002, ACP: P= .0147), cartilage oligomeric matrix protein (HS: P= .0002, ACP: P= .0005), and biglycan (HS: P= .0002, ACP: P= .0003), whereas PRP showed no inducing effect. Among all tested blood-derived products, only stimulation with HS showed the formation of a meniscal ECM as well as positive cell proliferating and migrating effects invitro. Regarding a potential biological repair of nonvascular meniscus lesions, our results may point toward the use of HS as a beneficial augment in regenerative meniscus repair approaches. Our findings may suggest that HS might be a beneficial augment for meniscus repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arthroscopy: The Journal of Arthroscopic & Related Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.