Abstract

We extended a class of coupled PDE–ODE models for studying the spatial spread of airborne diseases by incorporating human mobility. Human populations are modeled with patches, and a Lagrangian perspective is used to keep track of individuals’ places of residence. The movement of pathogens in the air is modeled with linear diffusion and coupled to the SIR dynamics of each human population through an integral of the density of pathogens around the population patches. In the limit of fast diffusion pathogens, the method of matched asymptotic analysis is used to reduce the coupled PDE–ODE model to a nonlinear system of ODEs for the average density of pathogens in the air. The reduced system of ODEs is used to derive the basic reproduction number and the final size relation for the model. Numerical simulations of the full PDE–ODE model and the reduced system of ODEs are used to assess the impact of human mobility, together with the diffusion of pathogens on the dynamics of the disease. Results from the two models are consistent and show that human mobility significantly affects disease dynamics. In addition, we show that an increase in the diffusion rate of pathogen leads to a lower epidemic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.