Abstract

To investigate the effect of hub clearance of cantilever stator on the aerodynamic performance and the flow field of the transonic axial-flow compressor, the performance of single-stage compressors with the shrouded stator and cantilever stator was studied numerically. It is found that the hub corner separation on the stator blade suction surface (SS) was modified by introducing the hub leakage flow. The separation vortex on the SS of the stator blade root at about 10% axial chord length caused by the interaction of the shock wave and boundary layer was also controlled. Compared with the tip clearance size of the rotor blade, the stator hub clearance size (HCS) has a much less effect on the overall aerodynamic performance of the compressor, and there is no obvious effect on the flow field in the upstream blade row. With the increase of HCS, the leakage loss and the blockage degree in the flow field near the stator hub are increased and further make the adiabatic efficiency and the total pressure ratio of the compressor gradually decrease. Meanwhile, the stall margin of the compressor was changed slightly, but the response of the stall margin to the change of the HCS is nonlinear and insensitive. The stator hub leakage flow (HLF) can not only change the flow field near the hub but also redistribute the flow law within the range of the entire blade span. It will contribute to further understand the mechanism of the HLF and provide supports for the design of the cantilever stator of transonic compressors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call