Abstract

This paper presents an experimental study of the effect of unsteady blade row interaction on the migration of hot streaks in an axial turbine. The hot streaks can cause localized hot spots on the blade surfaces in a high-pressure turbine, leading to high heat loads and potentially catastrophic failure of the blades. An improved understanding of the effect of unsteady blade row interaction on an inlet temperature distortion is of crucial importance. The impact of hot streaks on the aerodynamic performance of a turbine stage is also not well understood. In the current experiment, the influence of hot streaks on a highly loaded 1.5-stage unshrouded model axial turbine is studied. A hot streak generator has been developed specifically for this project to introduce hot streaks that match the dimensional parameters of real engines. The temperature profile, spanwise position, circumferential position, and cross-section shape of the hot streak can be independently varied. The recently developed ETH Zurich two-sensor high temperature (260 °C) fast response aerodynamic probe (FRAP) technique and the fast response entropy. Probe (FENT) systems are used in this experimental campaign. Time resolved measurements of the unsteady pressure, temperature, and entropy are made at the NGV inlet and between the rotor and stator blade rows. From the nozzle guide vane inlet to outlet the measurements show a reduction in the maximum relative entropy difference between the free stream and the hot spot of 30% for the highest temperature gases in the core of the hot streak, indicating a region of heat loss. Time resolved flow field measurements at the rotor exit based on both measurement methods showed the hot gases traveling towards the hub and tip casing on the blade pressure side and interacting with secondary flows such as the hub passage vortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call