Abstract

AbstractPoly(vinylidene fluoride) (PVDF) was electrospun into ultrafine fibrous membranes from its solutions in a mixture of N,N‐dimethylformamide and acetone (9:1, v/v). The electrospun membranes were subsequently treated by continuous hot‐press at elevated temperatures up to 155°C. Changes of morphology, crystallinity, porosity, liquid absorption, and mechanical properties of the membranes after hot‐press were investigated. Results of scanning electron microscopy showed that there were no significant changes in fibrous membrane morphology when the hot‐press temperature varied from room temperature to 130°C, but larger pores were formed because of fibers melting and bonding under higher temperatures. Analyses of X‐ray diffraction and differential scanning calorimeter exhibited that the crystalline form of PVDF could transfer from β‐type to α‐type during hot‐press at temperatures higher than 65°C. Tensile tests suggested that the mechanical properties of the electrospun PVDF membranes were remarkably enhanced from 25 to 130°C, whereas the porosity and the liquid absorption decreased. The hot‐press at 130°C was optimal for the electrospun PVDF membranes. The continuous hot‐press post‐treatment could be a feasible method to produce electrospun membranes, not limited to PVDF, with suitable mechanical properties as well as good porosity and liquid absorption for their applications in high‐quality filtrations or battery separators. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.