Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been used widely for treating human immunodeficiency virus type 1 (HIV-1) infected patients as a component of highly active antiretroviral therapy (HAART) and for the prevention of mother-to-child transmission (MTCT). Cytochrome P450 (CYP) 2B6 is an important hepatic isoenzyme responsible for the metabolism of NNRTIs including efavirenz and nevirapine. Recent pharmacogenetic studies have shown that CYP2B6 genetic variants alter hepatic CYP2B6 protein expression and function, and the pharmacokinetics of several CYP2B6 substrates. In particular, the CYP2B6-G516T polymorphism in exon 4 affects the pharmacokinetics of efavirenz. Other studies have shown associations of the CYP2B6-G516T genotype with nevirapine pharmacokinetics and central nervous system adverse effects related to efavirenz use. In total, CYP2B6 genetic variants are important determinants of efavirenz and nevirapine pharmacokinetics . Further studies are needed to identify the associations of CYP2B6 genetic variants with the development of NNRTI resistant viruses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.