Abstract

Understanding the degree of leg stiffness during human movement would provide important information that may be used for injury prevention. In the current study, we investigated bilateral differences in leg stiffness during one-legged hopping. Ten male participants performed one-legged hopping in place, matching metronome beats at 1.5, 2.2, and 3.0 Hz. Based on a spring-mass model, we calculated leg stiffness, which is defined as the ratio of maximal ground reaction force to maximum center of mass displacement at the middle of the stance phase, measured from vertical ground reaction force. In all hopping frequency settings, there was no significant difference in leg stiffness between legs. Although not statistically significant, asymmetry was the greatest at 1.5 Hz, followed by 2.2 and 3.0 Hz for all dependent variables. Furthermore, the number of subjects with an asymmetry greater than the 10% criterion was larger at 1.5 Hz than those at 2.2 and 3.0 Hz. These results will assist in the formulation of treatment-specific training regimes and rehabilitation programs for lower extremity injuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.