Abstract

Herein, the best homogenization process of 466.5 °C × 36 h + 490 °C × (14–26.4 h) that can completely eliminate the coarse phases σ[Mg(Zn, Al, Cu)2] and S(Al2CuMg) in the Al–Zn–Mg–Cu aluminum alloy is developed. The homogenization process is determined by the method of calculation phase diagram, and the experimental verification. It is shown in the results that, first, in the microstructure of the as‐cast alloys, the crystal structure of the σ[Mg(Zn, Al, Cu)2], Al7Cu2Fe, and Mg2Si phases is determined. Second, during the homogenization process, the σ[Mg(Zn, Al, Cu)2] phase dissolves and also transforms into the S(Al2CuMg) phase. Most importantly, the dissolution temperature range of the σ[Mg(Zn, Al, Cu)2], S(Al2CuMg), and Al7Cu2Fe phases is determined from 472.56 to 476.36 °C, from 484.09 to 485.39 °C, and from 540.18 to 547.23 °C, respectively. At best homogenization process, the residual Al7Cu2Fe phase area fraction ranges from 1.28 ± 0.16% to 1.60 ± 0.18%. In addition, dispersed η(MgZn2) phase precipitates in supersaturated Al‐matrix during differential scanning calorimeter heating. And, the concentration differences between the grain center and the eutectic of structure of Zn, Mg and Cu regression equations are established, which can provide some reference for the design of experimental parameters, thus reducing the experimental workload.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.