Abstract
Two groups of GABA (gamma-aminobutyric acid) analogues, one comprising derivatives of beta-proline and the other compounds structurally related to nipecotic acid, were investigated as potential inhibitors of high-affinity GABA transport in neurons and glial cells, as well as displacers of GABA receptor binding. In addition to cis-4-hydroxynipecotic acid, which is known as a potent inhibitor of GABA uptake, homo-beta-proline was the only compound which proved to be a potent inhibitor of glial as well as neuronal GABA uptake. IC50 values for GABA uptake into glial cells and brain cortex "prisms" were 20 and 75 micro M, respectively, and the IC50 value obtained for GABA uptake into cultured neurons was 10 micro M. A kinetic analysis of the action of homo-beta-proline on GABA uptake into cultured astrocytes and neurons showed that this compound acts as a competitive inhibitor of GABA uptake in both cell types. From the apparent Km values, Ki values for homo-beta-proline of 16 and 6 micro M could be calculated for glial and neuronal uptake, respectively. This mechanism of action strongly suggests that homo-beta-proline interacts with the GABA carriers. Furthermore, homo-beta-proline also displaced GABA from its receptor with an IC50 value of 0.3 micro M. The cis-4-hydroxynipecotic acid analogues, cis- and trans-4-mercaptonipecotic acid, had no inhibitory effect on glial or neuronal GABA uptake. Other SH reagents, PCMB, NEM and DTNB, were shown to be relatively weak inhibitors of GABA uptake into cultured astrocytes, suggesting that SH groups are not directly involved in the interaction between GABA and its transport carrier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.