Abstract

The honeycomb seal is a vital component to reduce the leakage flow and improve the system stability for the turbomachines. In this work, a three-dimensional model is established for the interlaced hole honeycomb seal (IHHCS) and the non-interlaced hole honeycomb seal (NIHHCS) to investigate its leakage and rotordynamic characteristics by adopting computational fluid dynamics (CFD). Results show that the hole arrangement patterns have little impact on the pressure drop and turbulence kinetic energy distribution for the seals, and the IHHCS possesses a slightly lower leakage flow rate than the NIHHCS. Moreover, the numerical results also show that the NIHHCS possesses a better rotordynamic performance than the IHHCS at all investigated conditions. Both seals show a larger k and a lower Ceff with the increase of the positive preswirl ratios and rotational speeds, while the negative preswirl ratios would reduce the k and improve the Ceff. The NIHHCS possesses a higher absolute value of Ft for all operating conditions, this could explain the distinction of Ceff for both seals at different working conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.