Abstract

Oscillation frequency of crane payloads is the main and most important factor in crane anti-sway control systems design. In the summer of 2005, a Smart Sway Control system (SSC) was installed on a 65-ton quay-side container crane at Jeddah Port. During the calibration phase of the installation, it was observed that heavy payloads combined with the dynamic stretch of the hoist cables had a significant impact on the configuration of the hoisting mechanism and the pattern of oscillation. This introduced considerable change in the oscillation frequency of the payload, which resulted in a significant impact on the performance of the anti-sway control system. Empirical formulas had to be used to compensate for the change in the frequency approximation used in the controller algorithm. In this work, an analytic approximation of the oscillation frequency of the hoisting mechanism of a quay-side container crane is developed, which takes into consideration the elasticity of the hoisting cables. A parametric study is performed to investigate the extent of the effect of the hoisting cables stretch on the system behavior for a typical range of payload masses and cable lengths. The performance of the delayed feedback control system used in the SSC controller is simulated on an elastic cables model using both the elastic and rigid cable frequency approximations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call