Abstract

Ho3+ ion-substituted nanocrystalline cobalt ferrite materials with the chemical formula CoFe2− x Ho x O4 for x = 0.0, 0.025, 0.05, 0.075 and 0.1 have been synthesised by standard citrate precursor method. Crystal structure and phase purity have been studied by powder X-ray diffraction (XRD) method by employing Rietveld refinement technique. The distribution of cations between the tetrahedral site (A-site) and octahedral site (B-site) has been estimated by Rietveld analysis. The refinement result shows that Ho3+ ion has a strong preference for octahedral sites (B-sites). The lattice constants decrease with the Ho3+ concentration up to x = 0.05. Crystallite size decreases with the Ho3+ concentration. The magnetic hysteresis loop measurements have been carried out at room temperature using a vibrating sample magnetometer (VSM) over a field range of ±2 T. The magnetisations in saturation have been analysed by employing the ‘law of approach (LA)’ technique. The magnetocrystalline anisotropy constant and saturation magnetisation are found to decrease with the Ho3+ concentration up to x = 0.05. The coercivity decreases with the Ho3+ concentration. The vibrational modes of the octahedral and tetrahedral metal complex in the sample have been carried out using Fourier transform infrared spectroscopy (FT-IR). The FT-IR spectra of the samples have been analysed in the wave number range of 350–1000 cm−1. We have observed two prominent absorption bands which are assigned to tetrahedral and octahedral metal complexes. The elemental analysis has been carried out using energy dispersive spectroscopy (EDS) with the help of field emission scanning electron microscope (FE-SEM) and the results reveal that, elements are as per the stoichiometric ratio in all the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call