Abstract

Glyceryl monooleate (GMO) is an amphiphilic surfactant, which as such can solubilize hydrophilic, lipophilic and amphiphilic drug molecules in its different polarity regions. Addition of additives with different polarities in GMO leads to change in phase behavior and related properties of GMO. Effect of the additives with different hydrophilic lipophilic balance (HLB; 1.5, 3, 4, 5, 7, 10 and 11) in GMO matrices on its phase transformation, rheological properties, mechanical properties, wetting and release behavior was investigated. Polarizing light microscopy showed that the GMO matrices incorporated with lower HLB additive (1.5, 3, 4 and 5) form cubic phase at higher rate while lamellar phase was prominent for matrices with additive of HLB 7, 10 and 11. The diametrical crushing strength and viscosity was decreased with increased HLB of additive. Lower HLB additives enhanced contact angle as compared to plain matrices and high HLB additives induced change in solid–liquid interface from hydrophobic to hydrophilic leading to decline in contact angle. Percent swelling of matrices was increased linearly with increase in HLB of additives. Tensiometric method was used for determination of bioadhesive strength of hydrated matrices and it was observed that matrices with additives of HLB 10 presented highest bioadhesion due to higher rate of hydration and formation of lamellar phase. As the HLB of additives in matrix increased, release was shifted from anomalous (non-Fickian) diffusion and/or partially erosion-controlled release to Fickian diffusion. Initial lag was observed for drug released from matrices with additive of HLB 1.5, 3, 4 and 5. Thus incorporation of the additives of different HLB changed molecular packing, which significantly affected drug release pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.