Abstract

AbstractA combined study of molecular dynamics (MD) simulation, experimental, and linear regression analysis method is presented for hindered phenol of 3,9‐bis[1,1‐dimethyl‐2‐{b‐(3‐tertbutyl‐4‐hydroxy‐5‐methylphenyl)propionyloxy}ethyl]‐2,4,8,10‐tetraoxaspiro‐[5,5]‐undecane (AO‐80)/nitrile‐butadiene rubber/linear phenolic resin (AO‐80/NBR/PR) composites with different AO‐80 contents to quantitatively establish the relations between microstructure and damping performance. The number of hydrogen bonds (NHBs), the fractional free volume (FFV), and the binding energy (Ebinding) of AO‐80/NBR/PR composites with different AO‐80 content are calculated by MD simulation from the microscopic scale. Damping parameters, including the loss factor peak (tan δmax) and the loss peak area (TA) (tan δ > 0.3), are obtained by dynamic mechanical analysis from macroscopic scale. The quantitative relationships between microstructure parameters (NHBs, Ebinding, and FFV) and macroscopic damping properties (tan δmax and TA) are obtained by linear regression analysis. This research is expected to provide a theoretical guidance for improving the damping performance of rubber‐based organic hybrid composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.