Abstract
Sprague-Dawley rats were fed either a high-salt (HS) diet (4.0% NaCl) or a low-salt (LS) diet (0.4% NaCl) for 3 days. Nitric oxide (NO) and superoxide production were assessed in the thoracic aorta by evaluating the fluorescence signal intensity from 4,5-diaminofluorescein (DAF-2DA) and dihydroethidine, respectively. Methacholine caused increased NO release in the aortas from rats on a LS but not HS diet. The SOD mimetic tempol restored methacholine-induced NO release in aortas from rats on a HS diet. Methacholine also caused superoxide production in the aortas of rats on a HS diet but not in the aortas of rats on a LS diet. Tempol and N(G)-monomethyl-l-arginine eliminated methacholine-induced superoxide production in the aortas of rats on a HS diet. Aortic rings from rats on the HS diet showed impaired methacholine-induced relaxation, which was improved by tempol. Tempol alone caused a NO-dependent relaxation of norepinephrine-precontracted aortas that was significantly greater in the aortas of rats on the HS diet than in vessels from rats on the LS diet. These data suggest that a HS diet impairs endothelium-dependent relaxation via reduced NO levels and increased superoxide production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.