Abstract

Ragworms (Hediste diversicolor) cultured under integrated multi-trophic aquaculture (IMTA) conditions display an improved fatty acids (FA) profile than conspecifics from the wild, thus being more suitable for maturation diets of marine fish and shrimp. Nonetheless, their use may represent a potential pathway for pathogens. The objective of the present study was to determine if high-pressure processing (HPP), as an approach to safeguard microbiological safety, could promote significant shifts on the FA profiles of different sized ragworms. An analysis of similarities (ANOSIM) revealed the existence of significant differences in the FA profile and lipid quality indexes (atherogenicity (AI), thrombogenicity (TI) and polyene (PI)) of control and HPP treated ragworms of all tested sizes (small, medium and large). Saturated (SFA) and monounsaturated FA (MUFA) increased after HPP, while polyunsaturated FA (PUFA; FA with 2 or 3 double bonds) and highly unsaturated FA (HUFA; FA with ≥ 4 double bonds) decreased. The amount of docosahexaenoic acid (DHA) in polychaetes exposed to HPP decreased an average of 25%, when compared with the levels recorded in control groups. The values of PI significantly decreased after HPP, while those of AI and TI displayed a significant increase. Despite the shifts in the FA profile of ragworms exposed to HPP, these still display a superior profile to that of wild specimens, namely the presence of DHA. Therefore, HPP can be considered as a suitable approach to safeguard the biosecurity of cultured polychaetes, without compromising their nutritional value, and support the principles of circular economy through the use of IMTA.

Highlights

  • In line with United Nations sustainable development goal 14 (SDG 14 “life below water”;,“conserve and sustainably use the oceans, seas and marine resources”) the greatest global aquaculture challenges consist in harmonizing environmental, social and economic perspectives [1]

  • 1776, popularly known as ragworms, in Integrated multi-trophic aquaculture (IMTA) systems has shown a high potential for the bioremediation of organic-rich waste produced by super-intensive fish farms, due to its ability to feed on particulate organic matter [5,6,7,8]

  • It has been shown that this extractive species has the ability to selectively retain and/or biosynthesize essential fatty acids (EFA), namely highly unsaturated fatty acids (HUFAs) [5,9,10]

Read more

Summary

Introduction

In line with United Nations sustainable development goal 14 (SDG 14 “life below water”; ,“conserve and sustainably use the oceans, seas and marine resources”) the greatest global aquaculture challenges consist in harmonizing environmental, social and economic perspectives [1]. The inclusion of the polychaete Hediste diversicolor O.F. Müller, 1776, popularly known as ragworms, in IMTA systems has shown a high potential for the bioremediation of organic-rich waste produced by super-intensive fish farms, due to its ability to feed on particulate organic matter [5,6,7,8]. When cultured in IMTA systems, ragworms can be regarded as a potential added value product for marine fish and shrimp broodstock, as they are commonly employed whole in maturation diets for a number of species e.g., Penaeus monodon (Fabricius) [13] and Solea solea (Linnaeus, 1758) [14]. The lipid and fatty acid profile of maturation diets are paramount for a high-quality development of gonads, enhanced fecundity and fertility [11,15,16]. The lack of essential fatty acids can compromise fecundity and hatching rate and induce anomalies in larvae [11]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call