Abstract

Delaying rice starch (RS) retrogradation can improve the quality parameters of rice-based starchy foods during storage. Modification of insoluble dietary fibre has always been used in the starchy food industry. Compared with vegetal insoluble dietary fibre, bacterial cellulose (BC) has many advantages such as high purity, smaller particle size, and elevated water absorption capacity. In the present work, BC was modified by high-pressure homogenisation (MBC) with different pressure levels (0, 50, 80, 120, and 160 MPa) to investigate the effect of MBC on RS retrogradation. Results showed that high-pressure homogenisation could decrease the particle size of BC. MBC addition to RS decreased paste breakdown and setback, thus suggesting that MBC might be a good candidate for increasing the stability of RS paste, and inhibiting its short-term retrogradation. The thermal properties and X-ray diffraction patterns of RS indicated that supplementing MBC could decrease the gelatinised enthalpy and relative crystallinity of RS paste during storage. Results also indicated that MBC could provide an opportunity to restrain RS retrogradation, and might be suitable for designing fibre-enriched products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call