Abstract

AbstractThe influence of highly degraded high‐density polyethylene (HDPE) on physical, rheological, and mechanical properties of HDPE‐wood flour composites was studied. For this purpose, the virgin HDPE was subjected to accelerated weathering under controlled conditions for 200 and 400 h. The virgin and exposed HDPE and pine wood flour were compounded to produce wood flour‐HFPE composites. The results showed that the accelerated weathering highly degraded HDPE. Degradation created polar functional carbonyl groups and also produced extensive cross‐linking in HDPE and consequently poor processibility. The interruptions in the flow characteristics of the degraded HDPE potentially caused processing hurdles when using them for extrusion or injection molding manufacturing as only small part (10%) of virgin HDPE could be replaced by highly degraded HDPE for wood flour‐HDPE composite manufacturing. The mechanical properties of composites containing highly degraded HDPEs were similar to the composites with virgin HDPE and in some cases they exhibited superior properties, with the exception being with the impact strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.