Abstract

We studied the effects of conventional mechanical ventilation (CMV) (15 ml/kg tidal volume delivered at 18-25 breaths/min) and high-frequency oscillatory ventilation (HFOV) (less than or equal to 2 ml/kg delivered at 10 Hz) on pulmonary hemodynamics and gas exchange during ambient air breathing and hypoxic gas breathing in 10 4-day-old lambs. After instrumentation and randomization to either HFOV or CMV the animals breathed first ambient air and then hypoxic gas (inspired O2 fraction = 0.13) for 20 min. The mode of ventilation was then changed, and the normoxic and hypoxic gas challenges were repeated. The multiple inert gas elimination technique was utilized to assess gas exchange. There was a significant increase with HFOV in mean pulmonary arterial pressure (Ppa) (20.1 +/- 4.2 vs. 22 +/- 3.8 Torr, CMV vs. HFOV, P less than 0.05) during ambient air breathing. During hypoxic gas breathing Ppa was also greater with HFOV than with CMV (29.5 +/- 5.7 vs. 34 +/- 3.1 Torr, CMV vs. HFOV, P less than 0.05). HFOV reduced pulmonary blood flow (Qp) during ambient air breathing (0.33 +/- 0.11 vs. 0.28 +/- 0.09 l . kg-1 . min-1, CMV vs. HFOV, P less than 0.05) and during hypoxic gas breathing (0.38 +/- 0.11 vs. 0.29 +/- 0.09 l . kg-1 . min-1, P less than 0.05). There was no significant difference in calculated venous admixture for sulfur hexafluoride or in the index of low ventilation-perfusion lung regions with HFOV compared with CMV.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.