Abstract

To investigate the induction of chromosomal aberrations in mouse m5S cells after exposure to high-frequency electromagnetic fields (HFEMFs) at 2.45 GHz, cells were exposed for 2 h at average specific absorption rates (SARs) of 5, 10, 20, 50 and 100 W/kg with continuous wave-form (CW), or at a mean SAR of 100 W/kg (with a maximum of 900 W/kg) with pulse wave-form (PW). The effects of HFEMF exposure were compared with those in sham-exposed controls and with mitomycin C (MMC) or X-ray treatment as positive controls. We examined all structural, chromatid-type and chromosome-type changes after HFEMF exposures and treatments with MMC and X-rays. No significant differences were observed following exposure to HFEMFs at SARs from 5 to 100 W/kg CW and at a mean SAR of 100 W/kg PW (a maximum SAR of 900 W/kg) compared with sham-exposed controls, whereas treatments with MMC and X-rays increased the frequency of chromatid-type and chromosome-type aberrations. In summary, HFEMF exposures at 2.45 GHz for 2 h with up to 100 W/kg SAR CW and an average 100 W/kg PW (a maximum SAR of 900 W/kg) do not induce chromosomal aberrations in m5S cells. Furthermore, there was no difference between exposures to CW and PW HFEMFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.