Abstract

Aim The aim of this study was to explore whether letrozole and high-fat diets (HFD) can induce obese insulin-resistant polycystic ovary syndrome (PCOS) with intestinal flora dysbiosis in a rat model. We compared the changes in the intestinal flora of letrozole-induced rats fed with HFD or normal chow, to explore the effects of HFD and letrozole independently and synergistically on the intestinal flora. Methods Five-week-old female Sprague Dawley (SD) rats were divided into four groups: control (C) group fed with regular diet; L1 group administered with letrozole and fed with regular diet; L2 group received letrozole and fed with HFD; and HFD group fed with HFD. At the end of the experiment, ovarian morphology, hormones, metabolism, oxidative stress, and inflammatory status of all rats were studied. 16S rDNA high-throughput sequencing was used to profile microbial communities, and various multivariate analysis approaches were used to quantitate microbial composition, abundance, and diversity. Results Compared to the C group, the increased plasma fasting insulin and glucose, HOMA-IR, triglyceride, testosterone, and malondialdehyde were significantly higher in the L2 group, while high-density lipoprotein cholesterol was significantly lower in the L1 group and L2 group. The indices of Chao1 and the Abundance-based Coverage Estimator (ACE) (α-diversity) in the L2 and HFD groups were significantly lower than that in the C group. Bray–Curtis dissimilarity based principal coordinate analysis (PCoA) plots and analysis of similarities (ANOSIM) test showed obvious separations between the L2 group and C group, between the HFD group and C group, and between the L2 and HFD groups. At the phylum level, Firmicutes and ratio of Firmicutes and Bacteroidetes (F/B ratio) were increased in the L2 group; Bacteroidetes was decreased in the L2 and HFD groups. No significant differences in bacterial abundance between the C group and L1 group were observed at the phylum level. Based on linear discriminant analysis (LDA) effect size (LEfSe) analysis, the bacterial genera (the relative abundance > 0.1%, LDA > 3, p < 0.05) were selected as candidate bacterial signatures. They showed that the abundance of Vibrio was significantly increased in the L1 group; Bacteroides and Phascolarctobacterium were enriched in the HFD group, and Bacteroides, Phascolarctobacterium, Blautia, Parabacteroides, Akkermansia [Ruminococcus]_torques_group, and Anaerotruncus were enriched in the L2 group. Conclusion The effect of letrozole on intestinal flora was not significant as HFD. HFD could destroy the balance of intestinal flora and aggravate the intestinal flora dysbiosis in PCOS. Letrozole-induced rats fed with HFD have many characteristics like human PCOS, including some metabolic disorders and intestinal flora dysbiosis. The dysbiosis was characterized by an increased Firmicutes/Bacteroidetes ratio, an expansion of Firmicutes, a contraction of Bacteroidetes, and the decreased microbial richness. Beta-diversity also showed significant differences in intestinal microflora, compared with control rats.

Highlights

  • polycystic ovary syndrome (PCOS) is a common endocrine and metabolic syndrome among women of reproductive age [1]

  • Testosterone (T) concentration may affect the composition of the intestinal microbial community, and several studies have found that changes in the intestinal microbial community in PCOS women are related to hyperandrogenism and low α-diversity compared with the control group [3, 4]

  • Intestinal flora dysbiosis can interfere with normal follicular development by triggering a chronic inflammatory reaction and insulin resistance (IR), which is closely linked to the occurrence and development of PCOS [6]. e composition of the intestinal microflora is affected by many environmental factors

Read more

Summary

Introduction

PCOS is a common endocrine and metabolic syndrome among women of reproductive age [1]. Diet is considered to be one of the most important environmental factors affecting the composition of the intestinal microbial community [7]. Diet-induced obesity is related to a variety of metabolic and reproductive disorders, including PCOS [8]. Erefore, if a rat model can show the characteristics of ovarian and metabolic syndrome and the imbalance of intestinal flora, it would be valuable for further study of new PCOS therapy. Female Sprague Dawley (SD) rats were given oral letrozole to establish a model of PCOS and fed with a regular diet or HFD. Metabolism, and intestinal flora community of these rats

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call