Abstract

AbstractThe effect of high‐energy mechanical milling of CaCO3 (calcium carbonate) and STC (a mixture of sericite, tridymite and cristobalite) on mechanical properties, rheological and dynamical mechanical behavior of high‐density polyethylene (HDPE)/CaCO3 and HDPE/STC was studied through SEM (scanning electron microscope), DMTA (dynastic mechanical test analysis), mechanical and melt rheological properties tests. The experimental results show that addition of fillers treated by coupling agent and vibromilling to HDPE makes the impact strength of HDPE greatly increased. The impact strength of HDPE/treated CaCO3 (60/40) and HDPE/treated STC (60/40) is ca. 4 and 3 times respectively as high as that of HDPE. The SEM micrographs of impact fractured surfaces of treated fillers filled HDPE show extensive plastic deformation of HDPE matrix, indicating that the plastic deformation of matrix induced by the treated fillers is the main contribution for absorbing a great amount of impact energy. This is the reason why the impact strength of HDPE greatly increases with addition of coupling agent and vibromilling treated fillers. The intensity of γ relaxation peak of HDPE in HDPE/treated CaCO3 on tanδ vs. temperature curve increases and the peak shifts to higher temperature due to its stronger interface interaction as compared with that of HDPE/untreated CaCO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.