Abstract

The sinterability of ZrB2-20vol.% SiC ceramics by high-energy ball milling as well as introduction of Zr and Al as sintering additives. Densification process and microstructure of ZrB2-SiC ceramics were investigated. After high-energy ball milling, the average particle size decreased to about 500 nm-2 μm, and ZrB2-SiC powder can be sintered to 98.92% theoretical density at 1800 °C, but a trace of amount of oxidation (ZrO2) were detected in sintered sample. Introduction of Zr, Al and C combined with high-energy ball milling enhanced the densification of ZrB2-SiC ceramics and reduced the particle sizes, and the relative density of obtained ceramic reached up to 99.49% at 1800 °C. The additions of Zr, Al and C can remove the oxide impurities of the surface of ZrB2 particles and form a reaction between oxide impurities. The fracture toughness increased of the 40% when ZrB2 powders were milled by high-energy ball milling, and increased to 4.77±0.18 MPa•m1/2. However, the attrition-milled composites had lower hardness and Young’s modulus, which was attributed to the presence of a second phase in the grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.