Abstract

In the present study, hydrogenation treatment was adopted to tailor the phase constituents of the Ti-V-Al shape memory alloy, further optimizing its performances. It can be found that hydrogenation treatment induced the transition from the α″ martensite phase to the β parent phase. Moreover, large amounts of hydride precipitates can be observed in the hydrogenation treated Ti-V-Al shape memory alloy with longer time of 5h. Meanwhile, the grain size of the Ti-V-Al shape memory alloy was reduced as a result of hydrogenation treatment. The interstitial atom H serving as a β-stabilizing element led to the reduction of martensitic transformation temperature. In proportion, hydrogenation treatment caused the enhancement of yield strength and decrease of elastic modulus, which promoted its application in biomedical fields. Besides, by optimizing the time of hydrogenation treatment, the hydrogenation treated Ti-V-Al shape memory alloy with 1 h possessed the superior corrosion resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.