Abstract

The effect of high-temperature heat treatment on purity and structural changes of multiwalled carbon nanotubes (MWCNTs) were studied by subjecting the raw MWCNTs (pristine MWCNTs) to 2600∘C for 60 and 120 min. Thermogravimetric analysis (TGA), X-ray diffraction, Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to study the effect of heat-treatment duration on the purity and structural changes of MWCNTs. Results show that high-temperature heat treatment can be used to purify MWCNTs with proper optimization of treatment time. It was observed that 60 min heat treatment of raw MWCNTs imparts high purity and structural perfection to MWCNTs, while 120 min heat treatment imparts structural degradation to MWCNTs with collapse of the innermost shells. The present study indicates that metal impurities act as moderators in controlling the degradation of MWCNTs up to certain duration, and once the metal impurities escape completely, further heat treatment degrades the structure of MWCNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call