Abstract

This study investigated the inhibitory effects of NaCl on tracheary element (TE) differentiation in light-grown callus of ice plant Mesembryanthemum crystallinum L., a halophyte which adaptes well to saline environments. When ice plant callus was grown in a modified Linsmaier-Bednar and Skoog culture medium containing no NaCl (control medium), up to 20% of ice plant cells differentiated into tracheary elements during in vitro culture. Close examination of callus tissues stained with potassium permanganate revealed that tracheary elements were aggregated as discrete nodules. Some strikingly elongated tracheary elements were found in the macerated tissues. Experimental results indicated that adding 200 mM NaCl to the control medium reversibly inhibited the formation of tracheary element in the halophytic cells. The rate of tracheary element formation increased accordingly as the rate of cell growth in control medium. In the presence of high salt, the degree of tracheary element differentation remained low through the growth cycle. The inhibitory effect of salt on tracheary element differentiation was overcome by adding 10 mg l−1 salicylic acid, a known signaling compound that induces a diverse group of defense-related genes, including genes involved in reinforcing the host cell wall. Furthermore, microscopic examination revealed that most tracheary elements formed under this treatment (200 mM NaCl plus 10 mg l−1 salicylic acid) were round shaped. The results suggest that high salt inhibits both the biosynthesis of secondary wall components and cell elongation ice plant in vitro culture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.