Abstract

The application of high hydrostatic pressure (HHP) in winemaking for substitution of the use of sulphur dioxide is still at a very early stage of development, since knowledge about the effect on physicochemical and sensorial characteristics of the wine during storage is very scarce. In this work, the evolution of colour, antioxidant activity and total phenolic compounds of SO2-free red wines treated by HHP and aged in bottles was followed for 12months. The pressurised wines were compared with wine samples prepared with addition of 40ppm of SO2 and without any of these two treatments. After 12months, the pressurised wines presented higher values of CIELab parameters (a∗, b∗, and L∗) and a lower monomeric anthocyanin content (45–61%) when compared to the unpressurised ones. The pressurised wines showed also a better global sensorial assessment, with the pressure treatments imparting aged-like characteristics to the wines. The wine deposits of pressurised wines had higher total phenolic content, namely proanthocyanidins (3- to 10-fold). The results demonstrate that HHP can influence long term red wine physicochemical and sensorial characteristics, hypothesised to be due to an increase of condensation reactions of phenolic compounds, forming compounds with higher degree of polymerisation that became insoluble in wine along storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call