Abstract

The wear property of NiTi is one of the most important properties of this alloy. In the current study, the effect of high-pressure torsion (HPT) process on the wear properties of an austenitic NiTi shape memory alloy is investigated. Full density NiTi samples with a composition of Ti-56 wt% Ni are fabricated using hot isostatic pressing (HIP), followed by the HPT process at room temperature, with an applied pressure of 6 GPa for 10 turns. The microstructural analysis reveals that the HIP-processed samples with a B2-NiTi phase evolve into significant grain refinement after HPT process and an interwoven B2-B19′ nanocrystalline/amorphous structure formed, leading to increased hardness in these samples. The results of the wear tests using a ball-on-disc configuration at room temperature demonstrate that the wear performance of the samples is improved after the HPT process. This is due to greater hardness and better pseudo-elasticity in the HPT-processed samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.