Abstract

Audio frequency electrical conductivity and relaxation studies have been carried out on Parel 58 elastomer and Parel 58 elastomer complexed with a variety of lithium salts. The measurements have been carried out in vacuum over the temperature range 5–380 K and at pressures up to 0.65 GPa over the temperature range 230–380 K. Both the electrical conductivity for the complexed material and the electrical relaxation time associated with the α relaxation in the uncomplexed material exhibit VTF or WLF behavior. From a VTF analysis for both the vacuum electrical relaxation time and electrical conductivity, Ea is found to be about 0.09 eV and T0 is found to be about 40 °C below the ‘‘central’’ glass transition temperature. In addition, it is found that the activation volumes for the electrical relaxation time and the electrical conductivity are the same when compared relative to T0. These results imply that the mechanism controlling ionic conductivity is the same as that for the α relaxation, namely large-scale segmental motions of the polymer chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call