Abstract

Catalytic hybrid rocket motors using hydrogen peroxide (HP) are easy and efficient to achieve multiple starts and stops, and hydroxyl-terminated polybutadiene (HTPB) grains are commonly used due to their excellent mechanical properties. The low regression rate of HTPB grains limits the application of hybrid rocket motors. Furthermore, the addition of solid aluminum particles can effectively improve the regression rate and performance of hybrid rocket motors. However, the experimental results of a high mass fraction of aluminum and hydrogen peroxide available at present are not sufficient. In this research, the impact of a high mass fraction of aluminum on the motor performance and ablation rate of nozzles is studied experimentally. A solution of 95% hydrogen peroxide and HTPB with an aluminum additive are adopted as propellants. The variation in the axial regression rate of the grains is obtained by computed tomography (CT) scans and pre-test parameter measurements. The instantaneous regression rate method is adopted to obtain the real-time regression rate of the motor. The surface appearance and composition of the front and the end of the grains after the tests are analyzed by electron microscopy. Carbon ceramic and tungsten-bronze nozzles are used to explore the effect of a high mass fraction of aluminum on nozzle ablation. The experimental results show that the addition of aluminum raises the specific impulse and decreases the optimal oxygen-to-fuel ratio of the propellant combination. The high mass fraction of the aluminum particles has a severe ablative effect on carbon ceramic nozzles, while the effect on tungsten-bronze nozzles is minimal for a hot test lasting four to five seconds. Our results can provide experimental guidance for the application of a high mass fraction of aluminum and hydrogen peroxide hybrid rocket motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.