Abstract

Cellular membranes are vital elements, and their integrity is extremely essential for the viability of the cells. We studied the effects of high linear energy transfer (LET) radiation on the membranes. Rabbit erythrocytes (1 x 10(7) cells/ml) and microsomes (0.6 mg protein/ml) prepared from liver of rats were irradiated with 7Li ions of energy 6.42 MeV/u and 16O ions of energy 4.25 MeV/u having maximum LET values of 354 keV/microm and 1130 keV/microm, respectively. 7Li- and 16O-induced microsomal lipid peroxidation was found to increase with fluence. The 16O ions were more effective than 7Li ions, which could be due to the denser energy distribution in the track and the yield of free radicals. These findings suggested that the biological membranes could be peroxidized on exposure to high-LET radiation. Inhibition of the lipid peroxidation was observed in the presence of a membrane-active drug, chlorpromazine (CPZ), which could be due to scavenging of free radicals (mainly HO* and ROO*), electron donation, and hydrogen transfer reactions. The 7Li and 16O ions also induced hemolysis in erythrocytes. The extent of hemolysis was found to be a function of time and fluence, and showed a characteristic sigmoidal pattern. The 16O ions were more effective in the lower fluence range than 7Li ions. These results were compared with lipid peroxidation and hemolysis induced by gamma-radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call