Abstract

Surimi from silver carp with different salt contents (0–5%) was obtained treated by high intensity ultrasound (HIU, 100 kHz 91 W·cm−2). The gelation properties of samples were evaluated by puncture properties, microstructures, water-holding capacity, dynamic rheological properties and intermolecular interactions. As the salt content increased from 0 to 5%, gel properties of surimi without HIU significantly improved. For samples with low-salt (0–2% NaCl) content, HIU induced obvious enhancement in breaking force and deformation. HIU promoted the protein aggregation linked by SS bonds, hydrophobic interactions and non-disulfide covalent bonds in surimi gels with low-salt content. Moreover, microstructures of HIU surimi gels with low-salt content were more compact than those of the corresponding control samples. HIU also improved the gelation properties of surimi with 3% NaCl to an extent. However, for high-salt (4–5% NaCl) samples, HIU decreased the breaking force and deformation of surimi gels due to the degradation of proteins suggested by increased TCA-soluble peptides. In conclusion, HIU effectively improved the gelation properties of surimi with low-salt content (0–2% NaCl), but was harmful for high-salt (4–5% NaCl) surimi. This might provide the theoretical basis for the production of low-salt surimi gels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.