Abstract

To improve cognitive function, moving the body is strongly recommended; however, evidence regarding the proper training modality is still lacking. The purpose of this study was therefore to assess the effects of high intensity interval training (HIIT) compared to moderate intensity continuous exercise (MICE), representing the same total training load, on improving cognitive function in healthy adults. It was hypothesized that after 6 weeks (3 days/week) of stationary bike training, HIIT would improve executive functions more than MICE. Twenty-five participants exercised three times a week for 6 weeks after randomization to the HIIT or MICE training groups. Target intensity was 60% of peak power output (PPO) in the MICE group and 100% PPO in the HIIT group. After training, PPO significantly increased in both the HIIT and MICE groups (9% and 15%, p < 0.01). HIIT was mainly associated with a greater improvement in overall reaction time in the executive components of the computerized Stroop task (980.43 ± 135.27 ms vs. 860.04 ± 75.63 ms, p < 0.01) and the trail making test (42.35 ± 14.86 s vs. 30.35 ± 4.13 s, p < 0.01). T exercise protocol was clearly an important factor in improving executive functions in young adults.

Highlights

  • The positive effects of physical activity and exercise [1] on brain function and its metabolism are well known

  • It is well documented that age-related cognitive decline is heterogeneous and several factors modulate the impact of aging on cognition [4]

  • After the 6 week training protocol, VO2 max increased significantlyfor forboth boththe the moderate intensity continuous exercise (MICE)

Read more

Summary

Introduction

The positive effects of physical activity (movements carried out by the muscles that require energy) and exercise (planned, structured and intentional movement) [1] on brain function and its metabolism are well known. There is extensive research showing that regular physical activity and exercise can improve cardiorespiratory function and body composition while lowering the risk of chronic disease and mortality [2,3]. Most studies have documented larger positive impacts of exercise in tasks that involve the prefrontal cortex of the brain [6]. This brain region is involved in many cognitive processes including attention, decision-making, executive function, and working memory [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call