Abstract

The effectiveness of hydrostatic pressure processing (HPP) for inactivating viruses has been evaluated in only a limited number of studies, and most of the work has been performed with viruses freely suspended in distilled water. In this work, HPP inactivation of freely suspended and shellfish-associated bacteriophage T7 was studied. T7 was selected in hopes that it could serve as a model for animal virus behavior. Clams (Mercenaria mercenaria) and oysters (Crassostrea virginica) were homogeneously blended separately and inoculated with bacteriophage T7. The inoculated bivalve meat and the freely suspended virus samples were subjected to HPP under the following conditions: 2, 4, and 6 min at 241.3, 275.8, and 344.7 MPa pressure and temperatures of 29.4 to 35, 37.8 to 43.3, and 46.1 to 51.7°C. Reductions of 7.8 log PFU (100% inactivation) were achieved for freely suspended T7 at 344.7 MPa for 2 min at 37.8 to 43.3°C. At 46.1 to 51.7°C, T7 associated with either clams or oysters was inactivated at nearly 100% (>4 log PFU) at all pressure levels and durations tested. These results indicate that T7 is readily inactivated by HPP under the proper conditions, may be made more susceptible to HPP by mixing with shellfish meat, and may serve as a viable model for the response of several animal viruses to HPP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call