Abstract

High hydrostatic pressure (HHP) is a non-thermal technology widely used in the industry to extend food shelf-life and it has been proven to enhance the extractability of secondary metabolites, such as carotenoids, in plant foods. In this study, fresh-cut papaya pulp of varieties (Sweet Mary, Alicia and Eksotika) from the Canary Islands (Spain) were submitted to the HHP process (pressure: 100, 350 and 600 MPa; time: come-up time (CUT) and 5 min) to evaluate, for the first time, individual carotenoid and carotenoid ester extractability and to assess their bioaccessibility using an in vitro simulated gastrointestinal digestion assay, following the standardized INFOGEST® methodology. In addition, changes in papaya pulp microstructure after HHP treatments and during the different phases of the in vitro digestion were evaluated with optical light microscopy. HPLC-DAD (LC-MS/MS (APCI+)) analyses revealed that HHP treatments increased the carotenoid content, obtaining the highest extractability in pulp of the Sweet Mary papaya variety treated at 350 MPa during 5 min (4469 ± 124 μg/100 g fresh weight) which was an increase of 269% in respect to the HHP-untreated control sample. The highest carotenoid extraction value within each papaya variety among all HHP treatments was observed for (all-E)-lycopene, in a range of 98–1302 μg/100 g fresh weight (23–344%). Light micrographs of HHP-treated pulps showed many microstructural changes associated to carotenoid release related to the observed increase in their content. Carotenoids and carotenoid esters of papaya pulp submitted to in vitro digestion showed great stability; however, their bioaccessibility was very low due to the low content of fatty acids in papaya pulp necessary for the micellarization process. Further studies will be required to improve papaya carotenoid and carotenoid ester bioaccessibility.

Highlights

  • The relationship between diet and health has been demonstrated constantly over human history [1,2]

  • The identification and quantification of carotenoids and carotenoid esters on the pulp tissue of the Sweet Mary, Alicia and Eksotika papaya varieties has been previously reported by Lara-Abia et al [13]

  • In the present study, unsaponified extracts obtained from papaya pulps treated with High hydrostatic pressure (HHP) were the main focus of the performed analyses

Read more

Summary

Introduction

The relationship between diet and health has been demonstrated constantly over human history [1,2]. A healthy diet protects against non-communicable diseases, such as cardiovascular diseases, cancer, hypertension and obesity [3,4,5]. Fruit and vegetables contain a large amount of different dietary phytonutrients, which contribute to the prevention of diseases caused by oxidative stress. Numerous investigations have estimated that one-half of hypertension and cardiovascular diseases and one-third of cancer cases could be attributed to diet [6,7,8,9,10]. Among the most worldwide traded tropical fruits (mango, pineapple, avocado and papaya) papaya is the least commercialized, but its trade has grown promisingly over the past decade [11]. The United States of America (USA) is the main importer of papaya, with an estimated share of 70%, followed by the European Union, with a share of 15% in 2018 [12]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call