Abstract

Abstract Arc cladding high-entropy alloy (HEA) coatings have the advantages of low cost and flexibility. It exhibits economic value to increase the proportion of Fe element in HEA systems. As a result, low-cost AlCoCrFeNi (Fe content of 42.5 at.%, 44.9 at.%, 47.5 at.%, 50.4 at.%) HEA coatings are prepared by gas tungsten arc (GTA) cladding and their microstructure, mechanical properties, and corrosion properties are investigated by XRD, SEM, EBSD, microhardness, nanoindentation, OCP, potentiodynamic polarization, and EIS. The valence electron concentration (VEC) plays an important role in the formation of phase structure. With the increase of Fe content, the phase structure of coating alloys changes from BCC to BCC + FCC, and the morphology changes from equiaxed grains to a dendritic structure. Coating alloy with higher Fe content displays lower microhardness and more active creep deformation due to the higher FCC fraction. The dual-phase (BCC + FCC) structure induces galvanic corrosion and deteriorates the corrosion properties. This work contributes to the fabrication of large-thickness and large-area HEA coatings at a low cost and provides an experimental basis for Fe-rich HEA design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call