Abstract

To improve the mechanical properties of the pre-deformed SUS 304 ultra-thin strip by regulating its microstructure, the paper uses high energy pulsed current to treat the pre-deformed SUS 304 ultra-thin strip. Uniaxial tensile samples with different pre-deformation (10%, 30%, 50%) are prepared by tensile testing machine and used to study the changes in microstructure and mechanical properties of the pre-deformed samples before and after the electric pulse treatment. The results show that the electric pulse treatment results in a complete recovery of plasticity and a 10% increase in elongation at break for the 10% pre-deformed sample, and leads to a 6.8% decrease in yield strength, a 13.2% increase in tensile strength and a 34.4% increase in elongation at break for the 50% pre-deformed sample. The electric pulse treatment causes recovery and static recrystallization of pre-deformed samples at lower temperatures, and some annealing twins are formed within the recrystallized grains. The electric pulse treatment reduces the dislocation density, refines the deformed grains, alleviates the {111} silk texture generated during pre-tensile deformation, and improves the anisotropy. It can be seen that the electric pulse treatment can significantly improve the mechanical properties of pre-deformed samples and promote the plastic deformation capacity of the SUS 304 ultra-thin strip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call