Abstract

To clarify the effects of a high fat-diet on insulin secretion from genetically diabetic beta cells, Goto-Kakizaki rats and Wistar rats were subjected to oral glucose tolerance test (OGTT) after 12-week high-fat feeding. We compared Wistar and Goto-Kakizaki (GK) rats fed a high-fat diet (45% fat content) for 12 weeks, measuring insulin secretion and insulin release. Insulin secretion during oral glucose tolerance test (OGTT) was enhanced in high-fat diet-fed Wistar rats (WF) with normal glucose tolerance. Insulin secretion in high-fat diet-fed GK rats (GF) during OGTT also was enhanced together with deteriorated glucose tolerance. Basal insulin release from the isolated perfused pancreas at 3.3 m glucose in WF was comparable to that in normal chow-fed Wistar rats (WN), but basal insulin release in GF was remarkably higher than in normal chow-fed GK rats (GN). Stimulated insulin release induced by 16.7 m glucose was remarkably increased in WF compared with WN. Total insulin release at 16.7 m glucose in both GK rat groups was similar and minimal. These results indicate that normal pancreatic beta-cells have the ability to secrete sufficient insulin to compensate for the insulin resistance induced by a high-fat diet. In contrast, glucose metabolism in diabetic rats after high-fat diet deteriorated partly because of insufficient insulin secretion caused by genetic defects and lipotoxicity due to chronically high FFA levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call