Abstract

High density polyethylene (HDPE) was added to the polypropylene (PP)/ethylene-propylene diene terpolymer (EPDM) binary blend, and the effect of testing temperatures on the modulus of elasticity, impact behavior and corresponding fracture morphology was analyzed. Modulus of elasticity generally decreased as the EPDM content increased regardless of the testing temperatures. However, it was found that the modulus of elasticity of PP/EPDM/HDPE ternary blend increased compared to PP/EPDM binary blend when tested at −30 and −60 °C. Notched Izod impact strength changed depending on the testing temperatures, however, there was not much difference between binary and ternary blends up to 20 wt% EPDM. However, at more than 30 wt% EPDM content, ternary blends showed higher impact strength compared to binary blends. Especially, at −30 °C, brittle-ductile transition was observed between 20 and 30 wt% EPDM. Subsurface morphology was also analyzed, and the relationship between the impact strength and the stress whitening zone was investigated. Scanning electron microscopy observation of impact fractured surfaces was conducted, and overall morphology was analyzed with respect to HDPE addition and testing temperature change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.