Abstract

BackgroundConsiderable evidence suggests that food impacts both the gastro-intestinal (GI) function and the microbial ecology of the canine GI tract. The aim of this study was to evaluate the influence of high-carbohydrate (HC), high-protein (HP) and dry commercial (DC) diets on the canine colonic microbiota in Beagle dogs. Diets were allocated according to the Graeco-Latin square design. For this purpose, microbial DNA was isolated from faecal samples and separated by density gradient centrifugation, resulting in specific profiling based on the guanine-cytosine content (%G + C). In addition, 16 S rRNA gene amplicons were obtained from the most abundant %G + C peaks and analysed by sequence analysis, producing a total of 720 non-redundant sequences (240 sequences per diet).ResultsThe DC diet sample showed high abundance of representatives of the orders Clostridiales, Lactobacillales, Coriobacteriales and Bacteroidales. Sequence diversity was highest for DC diet samples and included representatives of the orders Lactobacillales and Bacteroidales, which were not detected in samples from the HP and HC diets. These latter two diets also had reduced levels of representatives of the family Lachnospiraceae, specifically Clostridial cluster XIVa. The HC diet favoured representatives of the order Erysipelotrichales, more specifically the Clostridial cluster XVIII, while the HP diet favoured representatives of the order Fusobacteriales.ConclusionsThis study detected Coriobacteriales in dog faeces, possibly due to the non-selective nature of the %G + C profiling method used in combination with sequencing. Moreover, our work demonstrates that the effect of diet on faecal microbiota can be explained based on the metabolic properties of the detected microbial taxa.

Highlights

  • Considerable evidence suggests that food impacts both the gastro-intestinal (GI) function and the microbial ecology of the canine GI tract

  • Graeco-Latin square design was used to evaluate the influence of high-carbohydrate (HC), high-protein (HP) and dry commercial (DC) diets on the colonic microbiota of five Beagle dogs

  • Isolated bacterial DNA from canine faecal samples obtained during the feeding of one of the three specialized diets was used for %G + C profiling and sequencing of valid fractions from the %G + C profile

Read more

Summary

Introduction

Considerable evidence suggests that food impacts both the gastro-intestinal (GI) function and the microbial ecology of the canine GI tract. The aim of this study was to evaluate the influence of high-carbohydrate (HC), high-protein (HP) and dry commercial (DC) diets on the canine colonic microbiota in Beagle dogs. Diets were allocated according to the Graeco-Latin square design. For this purpose, microbial DNA was isolated from faecal samples and separated by density gradient centrifugation, resulting in specific profiling based on the guanine-cytosine content (%G + C). The microbial ecology of the canine gastro-intestinal (GI) tract is a rapidly expanding research area in veterinary medicine. Rats and mice support the hypothesis that the intestinal microbiota can be modified by diet [8,9,10]. Seven bacterial groups (Bacteroides, Clostridium, Lactobacillus, Bifidobacterium, Fusobacterium, Enterobacteriaceae and Coriobacterium) in five predominant phyla (Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria and Actinobacteria) have been identified from different parts of the canine intestine using culture techniques and/or various molecular methods [6,11,12,13]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.