Abstract

The Plume Ignition and Combustion Concept (PCC) developed by the authors significantly reduced nitrogen oxide (NOx) emissions in a direct-injection hydrogen engine under high-load operation. With PCC, a rich fuel plume is ignited immediately after completion of injection in the latter half of the compression stroke to reduce NOx formation. Simultaneously, high thermal efficiency was also achieved by mitigating cooling losses through optimization of the jet configuration in the combustion chamber. This basic combustion concept was applied to burn lean mixture in combination with the optimized hydrogen jet configuration and the application of supercharging to recover the power output decline due to the use of a diluted mixture. As a result, a near-zero-emission-level engine has been achieved that simultaneously provides high thermal efficiency, high power output and low NOx emissions at a single-digit ppm level [1]. In this study, a high compression ratio was applied to improve thermal efficiency further by taking advantage of the characteristics of hydrogen fuel, especially its diluted mixture with a high anti-knock property. As a result, NOx emissions at a single-digit ppm level and gross indicated thermal efficiency of 52.5% were achieved while suppressing knocking at a compression ratio of 20:1 by optimizing the excess air ratio and injection timing, and increasing power output by supercharging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call