Abstract

Extracellular matrices (ECMs) derived from tissues and decellularized are widely used as biomaterials in tissue engineering applications because they encompass tissue-specific biological and physical cues. In this study, we utilized a solubilized decellularized tissue (dECM) obtained from skeletal muscle to fabricate a nanofibrous structure using the electrospinning technique. The dECM was chemically modified by methacrylate reaction (dECM-MA) to improve the structural stability before electrospinning. The electrospun dECM-MA nanofibers were combined with microscale fibrillated poly(lactide-co-glycolide) (PLGA) constructs fabricated by three-dimensional printing and fibrillation/leaching of poly(vinyl alcohol) to promote skeletal muscle cell orientation and maturation. Using the electrostatic force-assisted fiber-alignment method, a multiscale composite scaffold consisting of fibrillated PLGA and aligned dECM-MA nanofibers was fabricated. The multiscale dECM-MA/PLGA composite scaffold significantly promoted the cellular orientation and myotube formation of human muscle progenitor cells compared to control scaffolds. The results suggested the potential use of the multiscale dECM-MA/PLGA composite scaffold, which contains the biochemical and topographical cues, for bioengineering a skeletal muscle tissue construct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call