Abstract

HFC-134a gas was investigated as a potential guest molecule to improve the thermodynamic conditions and formation rate for CO2 hydrate. In the phase equilibrium study, the equilibrium pressure of CO2 + HFC-134a was lower than that of pure CO2 gas, and the equilibrium pressure decreased gradually with increasing HFC-134a concentration. The dissociation enthalpy (ΔHd) was calculated using the Clausius–Clapeyron equation, and the ΔHd value also changed with increasing HFC-134a concentration. In particular, the ΔHd of 8 mol % HFC-134a-added CO2 hydrate was 143.2 kJ/mol, which was similar to that of pure HFC-134a (structure-II). In the kinetic study, the reactor was initially filled with CO2 + HFC-134a gas only and pure CO2 gas was then supplied as a source when the hydrate reaction proceeded. As a result, the formation rate of the HFC-134a mixture in the initial 2 min was faster than that of pure CO2. This was consistent with the gas chromatography results, which showed that HFC-134a occupies the cage at the ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.