Abstract

Thermal Al2O3 atomic layer etching (ALE) can be accomplished using sequential fluorination and ligand-exchange reactions. HF can be employed as the fluorination reactant, and Al(CH3)3 can be utilized as the metal precursor for ligand exchange. This study explored the effect of HF pressure on the Al2O3 etch rates and Al2O3 fluorination. Different HF pressures ranging from 0.07 to 9.0 Torr were employed for Al2O3 fluorination. Using ex situ spectroscopic ellipsometry (SE) measurements, the Al2O3 etch rates increased with HF pressures and then leveled out at the highest HF pressures. Al2O3 etch rates of 0.6, 1.6, 2.0, 2.4, and 2.5 A/cycle were obtained at 300 °C for HF pressures of 0.17, 0.5, 1.0, 5.0, and 8.0 Torr, respectively. The thicknesses of the corresponding fluoride layers were also measured using X-ray photoelectron spectroscopy (XPS). Assuming an Al2OF4 layer on the Al2O3 surface, the fluoride thicknesses increased with HF pressures and reached saturation values at the highest HF pressures. Fluori...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.