Abstract
Using the affinity-based reversed micelles composed of Cibacron Blue F3G-A (CB) modified soybean lecithin, the effect of hexanol as a cosolvent on the extraction of lysozyme and bovine serum albumin (BSA) was investigated. The water concentration in the reversed micelles increased significantly with increasing hexanol concentration. The partition coefficient of lysozyme could be increased by over 12-fold by introducing hexanol of higher than 0.5 vol%. However, the transfer of BSA was hardly affected because its high molecular weight resulted in a strong steric hindrance effect. The enzymatic activity of lysozyme was nearly 100% retained after undergoing the extraction process with the CB–lecithin micelles containing 3 vol% hexanol. The partitioning isotherms of lysozyme in the CB–lecithin micelles with and without hexanol addition were expressed by the Langmuir equation. The partitioning capacity of lysozyme was nearly increased twofold by introducing 3 vol% hexanol to the CB–lecithin micelles and reached 2.12 g/l. The cosolvent hexanol revealed insignificant effect on the mass transfer rate, and in both the systems with and without hexanol, the mass transfer rate in back extraction was 5–10 times slower than that in the forward extraction. This phenomenon was similar to that in conventionally employed ionic surfactant systems. The result suggests that in the present affinity-based reversed micelles, the interfacial resistance also played a more important role in back extraction than in forward extraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.