Abstract

Hepcidin is known to increase intracellular iron through binding to and degrading ferroportin, which is a transmembrane protein that transports iron from the intracellular to the outside. However, it is not clear whether hepcidin has a similar effect on intracellular calcium. Here, we investigated the influence of hepcidin on intracellular calcium in human osteoblasts, with or without high environmental iron concentrations. Our data showed that hepcidin (<100 nmol/L) could increase intracellular calcium, and this effect was more significant when cells were exposed to high environmental iron concentrations. To further explore its underlying mechanisms, we pretreated human osteoblasts with Nimodipine, a L-type calcium channel blocker, and Dantrolene, a ryanodine receptor antagonist to inhibit abnormal calcium release from the sarco-endoplasmic reticulum. These treatments had not resulted in any alteration of intracellular calcium in human osteoblasts. Thus, these findings indicate that the increase of intracellular calcium induced by hepcidin is probably due to calcium release from endoplasmic reticulum, which is triggered by calcium influx.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call