Abstract

Hepatocyte growth factor (HGF) is a paracrine cytokine that influences epithelial morphogenesis by modulating cell-cell adhesion and cell polarity. We have examined the role of HGF in the tight junction (TJ) formation. We followed the assembly and disassembly at the plasma membrane of the major component of the TJ, zonula occludens-1 (ZO-1) protein, after HGF treatment. We applied HGF to the basolateral compartment of MDCK cell monolayers grown on transwell filters to analyze the effect of HGF on polarized cells. Confocal laser scanning microscopy showed that HGF caused a marked reduction of ZO-1 at the lateral sites and a concomitant increase in the cytoplasm. We used the calcium switch assay to analyze the effect of HGF in early TJ development. In MDCK cells cultured in low calcium levels, ZO-1 is distributed intracellularly. The presence of HGF greatly retarded the movement of ZO-1 from the cytosol to the membrane after restoration of normal (1.8 mM) calcium levels for 1.5 and 3 hr. The presence of HGF during the calcium switch caused increased tyrosine phosphorylation of beta-catenin. The incubation of MDCK cells with vanadate, a potent tyrosine-specific phosphatase inhibitor, also affected the ZO-1 localization at the plasma membrane during the calcium switch. This was concomitant with increased tyrosine phosphorylation of beta-catenin. These results suggest that HGF affects the TJ assembly, and this phenomenon may be important in loosening of intercellular junctions and migration of epithelial cells during HGF-induced morphogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.