Abstract

To investigate the effect of Hepatitis B Virus X Protein (HBx) on the expression of lipid metabolism-related genes and its role in pathogenesis of hepatocyte fatty degeneration. Hepatitis B Virus X gene eukaryon expression vector pIRES2-eGFP-HBx was transfected into HepG2 cells to establish HepG2/HBx cell model for HBx expression. HepG2 cells transfected with pIRES2-eGFP (HepG2/pIRES2 cell) and non-transfected were used as controls. At 24, 48 and 72 hours after transfection, the expression of green fluorescent protein (GFP) was observed by fluorescence microscope and the triglyceride(TG) content was detected. RT-PCR and Western blot were applied to detect the levels of sterol regulatory element binding protein-1 (SREBP-1), liver x receptor alpha (LXRalpha) mRNA and the levels of HBx, LXRalpha and fatty acid synthase (FAS) protein. At 24, 48 and 72 hours after transfection, the expression of GFP was found in HepG2/HBx and HepG2/pIRES2 cells, and increased gradually. The expression of HBx was detected only in HepG2/HBx cells, and was increased with time after transfection (F = 32.21, P less than 0.01). These suggested successful obtaining of HepG2-HBx cell model for HBx expression. At 24h, 48h and 72h after transfection, the expression levels of LXRalpha mRNA (0.386+/-0.055, 0.505+/-0.071, 0.649+/-0.058 ) and SREBP-1 mRNA (0.395+/-0.055, 0.548+/-0.047, 0.795+/-0.058), as well as the levels of LXRalpha protein(0.178+/-0.036, 0.263+/-0.047, 0.347+/-0.058) and FAS protein(0.436+/-0.055, 0.608+/-0.053, 0.827+/-0.046) in HepG2-HBx group were dramatically higher than those in the controls at the same time points (all P less than 0.05/0.01), and were gradually increased with time (all P less than 0.05/0.01). A positive correlationship was observed between HBX protein level and the LXRalpha, SREbP-1 mRNA and LXRalpha, FAS protein levels. The difference of TG content between HepG2/HBx group and control groups was not statistically significant (P more than 0.05). HBx-LXRalpha-SREBP-1/FAS pathway suggested regulating transcription and expression of lipid metabolism-related genes, which might be one of the important molecular mechanism causing hepatocyte fatty degeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call