Abstract

Background: The fractional flow reserve (FFR) is the gold standard used to diagnose whether coronary stenosis triggers myocardial ischemia. Myocardial ischemia is not only related to the degree of coronary artery disease but also to hemodynamic parameters such as mean arterial pressure, flow, and so on. This paper will explore the effects of hemodynamic parameters on FFR. Methods: Construct an ideal vascular model of moderately stenosis lesions (40–70%) with different hemodynamic environments. A pressure waveform was set as the inlet boundary, a microcirculation resistance in the hyperemia state was set as the outlet boundary, and different hemodynamic environments were constructed by changing the mean arterial pressure and flow at rest. The microcirculation resistance in the resting state was determined by the mean arterial pressure and flow, and the microcirculation resistance in the hyperemia state was 0.24 times than in the resting state. Results:Flow at rest was found to have the greatest impact on FFR, followed by arterial pressure. Both a decrease in flow and an increase in mean arterial pressure caused an increase in the FFR value. Conclusion:Based on the degree of stenosis of the diseased blood vessel, systolic pressure, diastolic blood pressure, and blood flow through the diseased blood vessel in the resting state, a preliminary judgment can be directly made as to whether the stenosis causes myocardial ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.